The generator matrix 1 0 1 1 1 1 1 X+3 1 1 1 2X 1 1 1 1 1 0 1 2X 1 X+3 1 1 2X 1 0 1 1 1 1 1 1 X+3 1 X+6 1 1 0 1 1 1 1 1 1 1 1 1 2X 1 1 6 1 X+3 2X+6 1 2X+6 1 1 1 2X+6 1 1 1 1 2X 6 1 1 0 1 3 1 2X+3 0 1 1 3 1 1 0 1 2X+4 8 X+3 X+1 X+2 1 2X+8 2X 4 1 X+3 8 2X+4 0 X+2 1 4 1 2X+8 1 2X X+1 1 2X+4 1 X+1 8 0 4 X+2 2X+8 1 2X 1 X+3 X+1 1 6 X+6 2X+8 X+2 2X 8 X+7 X+5 2X+5 1 2X+7 4 1 7 1 1 5 1 X+5 5 X+3 1 1 7 X+1 X+4 1 1 X+8 X 1 2X+6 1 0 1 1 X+7 2X+4 X 6 X+3 0 0 3 0 0 0 3 3 3 6 3 6 6 0 6 6 3 3 6 0 6 0 0 3 6 6 3 0 6 3 0 6 0 3 0 0 6 3 0 3 0 3 3 6 0 3 3 0 0 6 6 3 6 6 3 0 6 6 6 3 3 0 6 0 3 6 6 6 6 6 6 3 0 3 0 0 6 0 3 0 0 0 0 6 0 0 0 0 0 6 3 3 6 6 3 3 3 6 3 3 6 6 6 3 0 6 6 6 3 0 6 0 0 0 6 6 0 0 3 3 3 6 0 3 3 6 3 0 0 0 6 3 6 0 0 0 3 6 3 3 0 3 3 0 0 3 0 3 6 6 0 3 6 6 3 6 0 6 3 3 0 0 0 0 3 6 3 3 6 0 3 3 3 3 0 3 6 0 6 3 6 0 6 0 3 6 3 6 3 3 0 6 6 0 3 3 0 6 6 0 0 3 0 6 6 0 3 0 6 3 3 0 0 0 6 3 0 0 0 6 3 3 0 3 3 6 6 6 6 0 6 6 0 6 0 3 0 6 3 6 generates a code of length 80 over Z9[X]/(X^2+3,3X) who´s minimum homogenous weight is 151. Homogenous weight enumerator: w(x)=1x^0+132x^151+588x^152+428x^153+666x^154+1482x^155+1050x^156+1086x^157+1488x^158+1750x^159+1500x^160+2058x^161+1858x^162+1380x^163+2010x^164+922x^165+462x^166+516x^167+44x^168+42x^169+72x^170+6x^171+24x^172+36x^173+36x^175+12x^176+6x^177+18x^178+2x^180+4x^183+4x^192 The gray image is a code over GF(3) with n=720, k=9 and d=453. This code was found by Heurico 1.16 in 62.5 seconds.